

Maintenance SPIs:

From Stand-Alone Indicators to Valid Inputs for Operational Safety

Jorge Leite
TAP Maintenance & Engineering
VP Quality

November 14th, 2012 Olten, Switzerland

Safety Management essentials

SMS Reconsidered

signed out at ICAO, we all knew we were going to instead. Go back to last year's budget, and see if Issuech a new industry full of consultants. We also you can find one single instance where informaknew that all these consultants couldn't possibly tion from your SMS caused you to spend money know much about the subject and would be forced differently than you had planned. If you cannot to regurgitate the ICAO guidance material that find an example of that in your operation, you was being put out. It was obvious that the process either have an extraordinarily brilliant budgeting people dealing with ISO and OMS would embrace process, or an SMS that is not delivering. I would the concept of SMS and treat it as another process bet on the latter. exercise. It was also clear that regulators were going If you want to go deeper, let me give you four to have a very hard time evaluating an SMS and simple audit questions that are really easy to anwould be forced to reduce the concept to a series - swer if you have an effective SMS, and impossible

All of those predictions have come true, so it is time to take an honest look at where we are and where we go from here. The ICAO guidance was built around the "four pillars," so now everybody has an SMS with four pillars. And of course, now every regulator has a checklist that counts the pillars. We all have policies, posters, forms, processes and meetings. This is all really very comforting to people who have never grasped the concept of risk management. They is to measure them against mindless objectives are reasoured by the fact that all they really have I think SMS was always a serious and practical to do is fill out the right form and show up at the idea. It is supposed to change the way you manweeldy meeting. Many well-menning operators age risk. Find a way to measure those changes, have worked themselves into a position where and you will find a way to drive an effective they are spending lots of time and money, but are implementation. not necessarily getting the intended results. Many managers have figured this out, and thankfully a few of them have come to us. We are learning a lot from these operators and, as a result, the Foundation is now trying to drive SMS back to its core principles

Before SMS was made complex by the consultants and process people, it was meant to do one

don't write about safety management systems simple thing - allocate resources against risk. (SMSs) much because everybody else seems to I would suggest that we measure that instead be getting "burned out" on the subject Back of counting our meetings and posters. Please when the international standards for SM5 were put away the checklist and try this approach

PRESIDENT'SMESSAGE

to answer if you don't

- 1. What is most likely to be the cause of your next accident or serious incident?
- 2. How do you know that?
- 3. What are you doing about it?

The easiest way to make people do silly things

President and CEO Pliebt Safety Foundation

Source: Flight Safety Foundation, Aero Safety World, May 2012

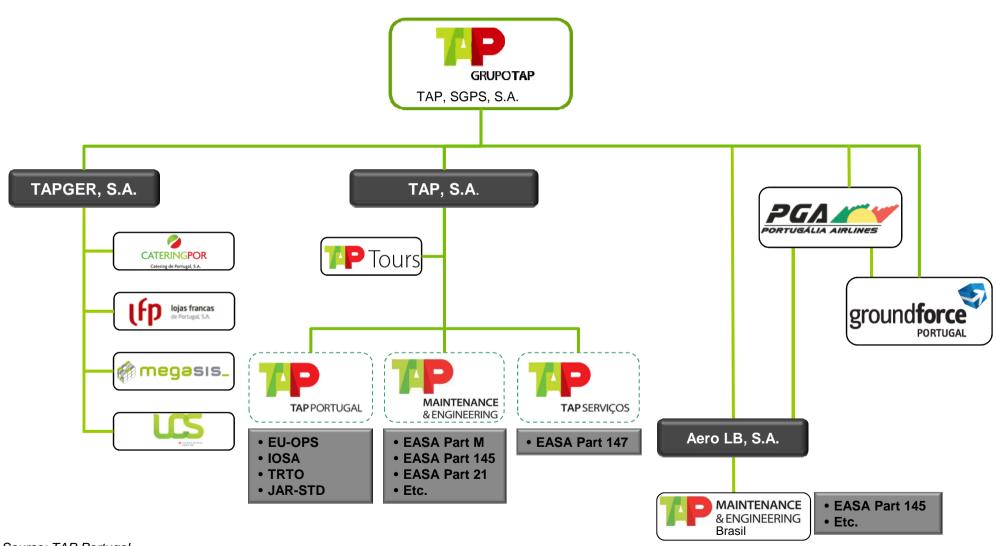
SMS is supposed to do one simple thing: allocate resources against risk

"...let me give you four simple audit questions that are really easy to answer if you have an effective SMS, and impossible to answer if you haven't:

- 1. What is most likely to be the cause of your next accident or serious incident?
- 2. How do you know that?
- What are you doing about it?
- Is it working?"

- We need to manage Safety, but...
- ...we cannot manage what we cannot measure, so...
- ...we need indicators (SPIs) to measure the system's performance.

Summary Overview



- TAP M&E: overview and SMS roadmap
- SMS Rules: recap and update
- SMS Connections in the MRO World
- From a Maintenance Threat to an Unrecoverable End State

TAP M&E Overview

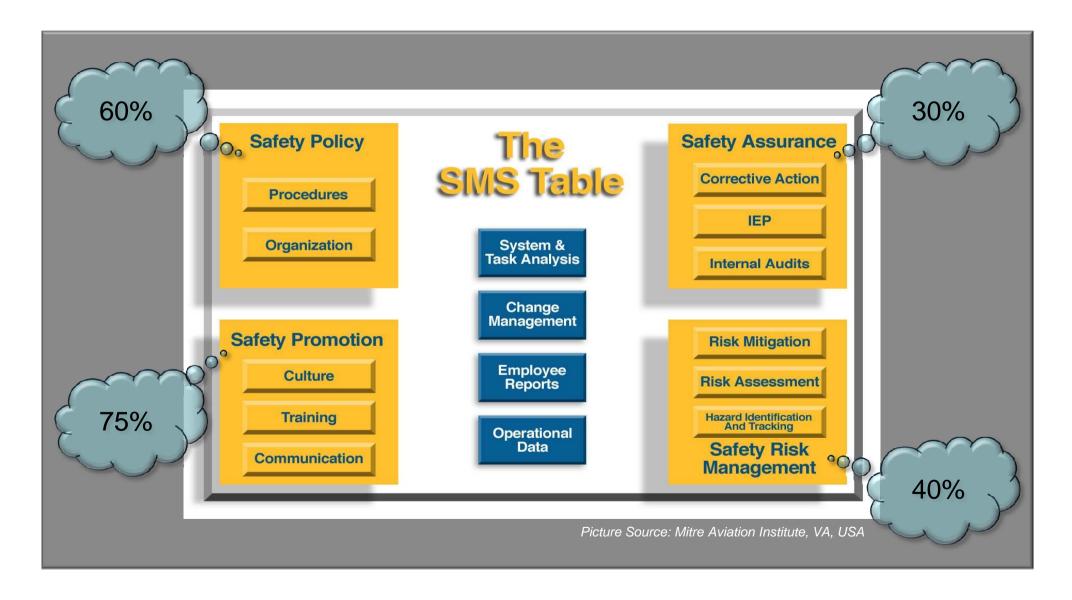
Source: TAP Portugal

SMS Scope at TAP M&E

- Part M, Part 145, Part 147 and Part 21
 - ICAO Doc. 9859 Ed. 2
 - Stand-alone policies and procedures
 - Safety requirements from Customers
 - Extension to Part 147 planned for 2013
- TAP M&E: part of TAP Portugal
 - IOSA requirements
 - Air Operations Implementing Rule (EC) 965/2012, ORO.GEN.200
 - EASp requirements
- Waiting for
- Portugal SSP requirements and targets
- ICAO Doc. 9859 Ed. 3
- ICAO Annex 19

SMS Roadmap at TAP M&E

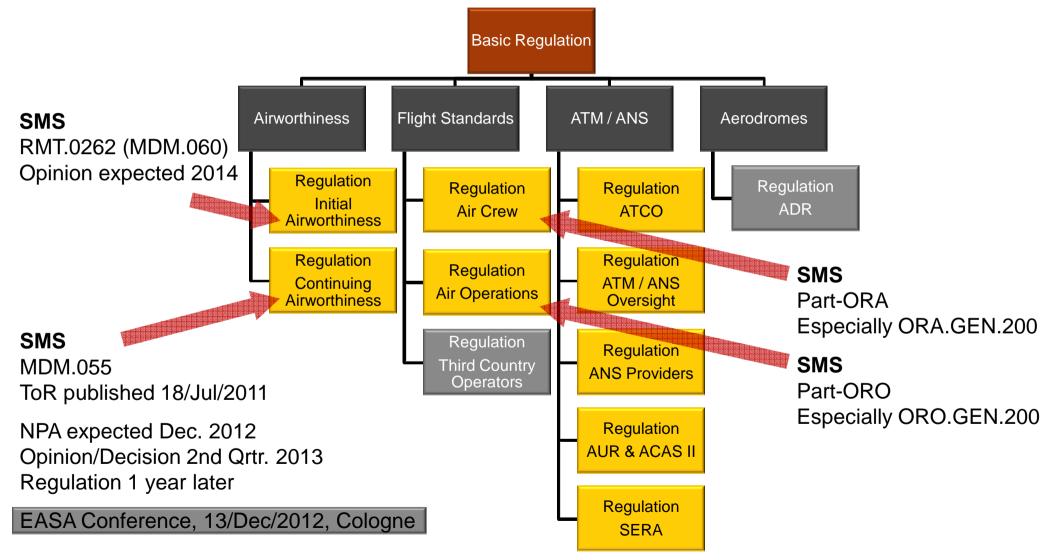
2007


- Analysis of Safety Reports and Technical Incidents
- Transition from WinBASIS to SENTINEL

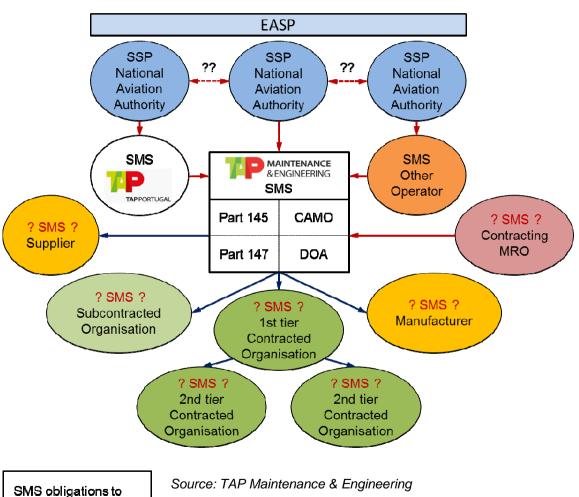
2006

- Analysis of ICAO Doc. 9859 Ed. 1
- Outreach presentation to the top management

SMS Implementation Status in TAP M&E (Nov. 2012)

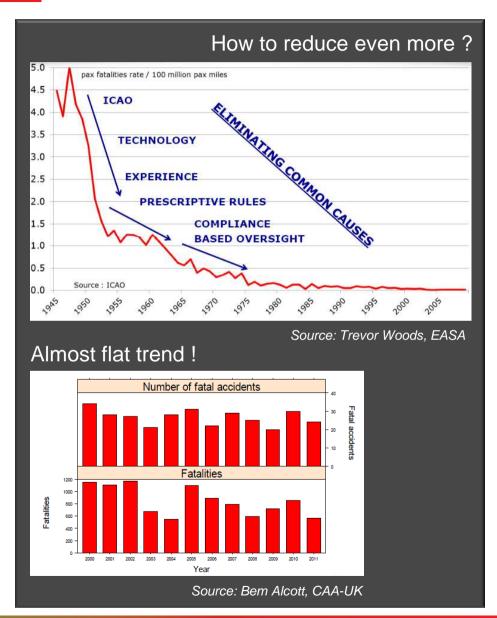


SMS in EU Rules



SMS Connections in the MRO World

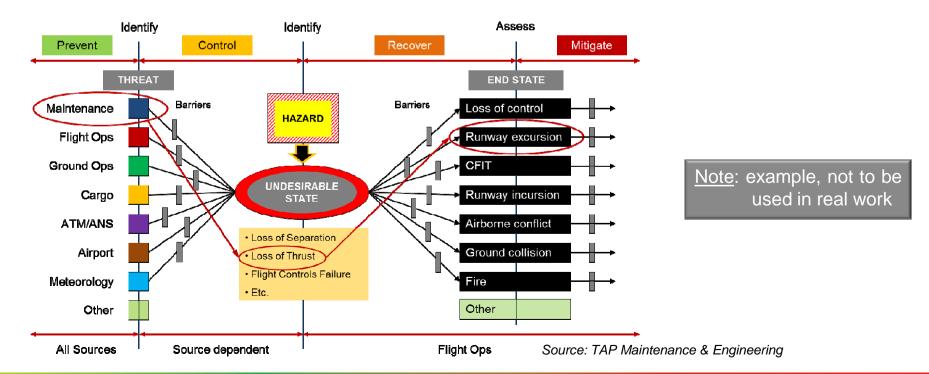
→ TAP/ME


SMS impositions from TAP/ME

- A Mx organization links its SMS upstream (NAA and operators) and downstream (suppliers and contracted organizations)
- When contracted organizations contract further downstream, the Mx organization SMS should proceed downstream
- Problems with different:
 - Cultures ? Customers ?
 - Suppliers ? Organizations ?

Fatalities Rate must be reduced

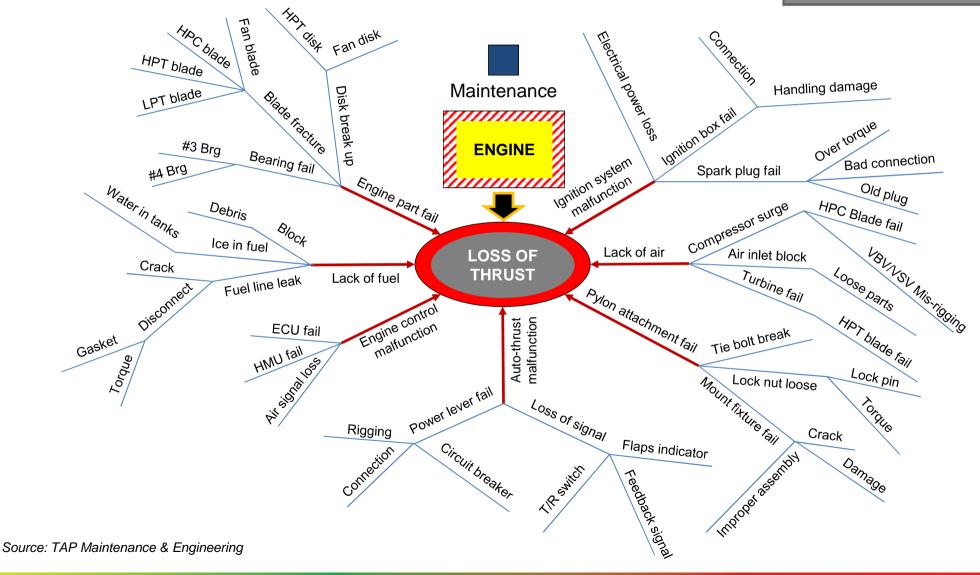
- Accidents today are rare events and their causes are multiple and random
- Fatal accidents and fatalities rate have dropped to a very low value
- Further drop is a challenge
- We cure the causes of these "random" accidents; but, if nothing had been done, probably that accident would not repeat itself anyway


When Maintenance is a Threat

IATA Safety Report 2011:

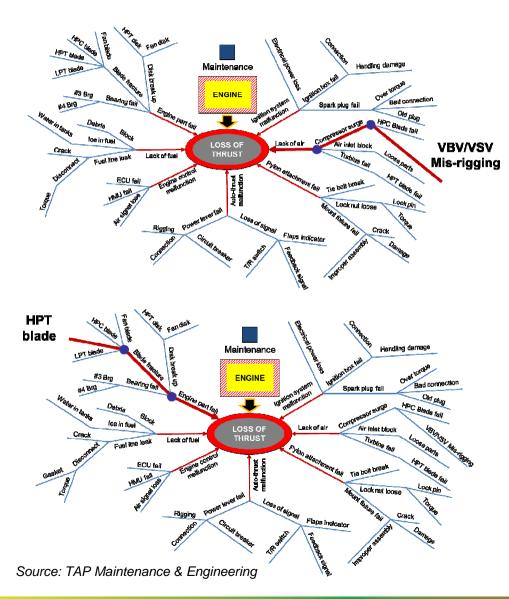
40% of maintenance related accidents involved landing gear malfunctions

- Maintenance issues were the primary cause in 9% of the accidents
- Aircraft technical faults and maintenance issues was the 2nd most frequent category of contributing factors to accidents



Olten, 2012 Nov 14 Maintenance SPIs 11

Maintenance Fault Tree (example)



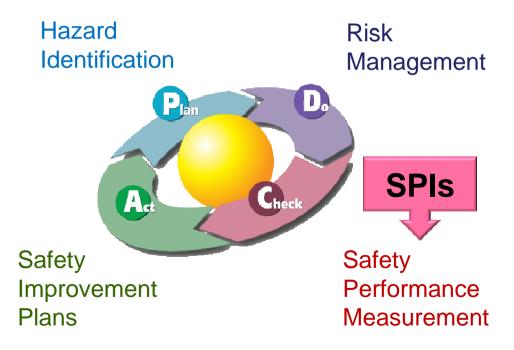
Note: example, not to be used in real work

Different Faults, same Undesirable State

- The same Undesirable State may result from two different Mx fault trees and Mx main causes
- Probably (due to the actual low accident rate and random causes) repetition of the same tree will not be frequent
- What is the value of setting up MxSPIs to measure performance of past causes?

ICAO Doc. 9859 Ed. 2

8.2 Safety performance monitoring and measurement


8.2.1 A service provider shall, as part of the SMS safety assurance activities, develop and maintain the necessary means to verify the safety performance of the organization in reference to the safety performance indicators and safety performance targets of the SMS, and to validate the effectiveness of safety risk controls.

Deming Cycle in TAP M&E SMS

- TAP M&E is also certified per ISO 9001 and EN 9110, which provides broad QMS experience in:
 - Applying the Deming Cycle
 - Mapping Mx processes
 - Using QMS KPIs
 - Setting targets and alerts
 - Doing management reviews
 - Setting action plans
 - Continuous improvement

 The same approach has been followed during the development of SMS in TAP M&E

Choosing MxSPIs

 MxSPIs are data based expressions of the frequency (ratios) of occurrence of some events, incidents or reports

Identified by the SMS of the Mx organization

Obvious

Linked to safety concerns

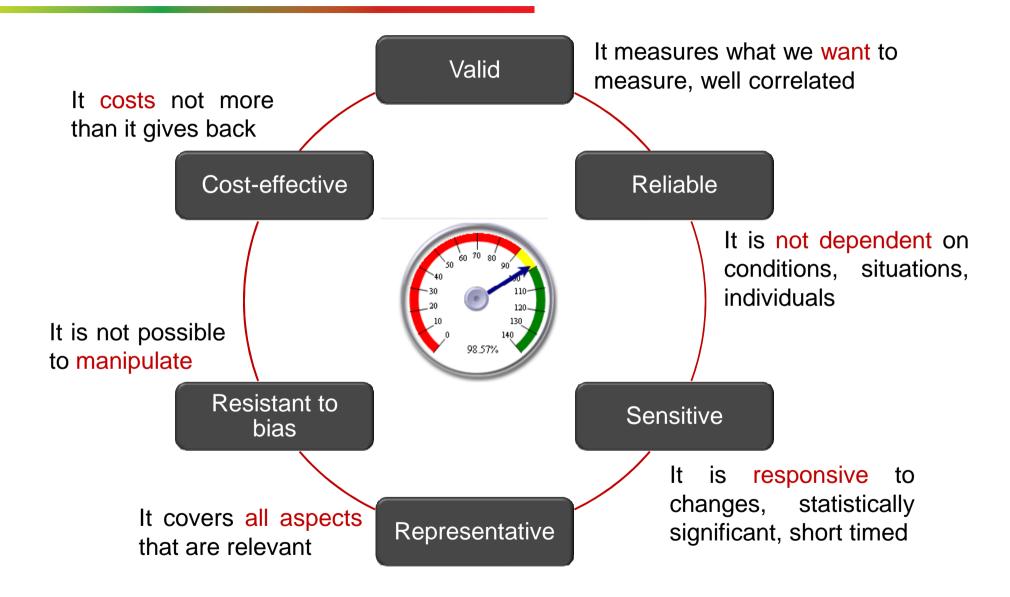
• Tracking significant occurrences

Aligned with the safety targets of the Mx organization

Short-term

Tactical

Reflecting the safety performance of the Mx organization


Measurable

Numerical

Validating useful MxSPIs

Types of MxSPIs

 MxSPIs in development at TAP M&E are classified in the following 3 categories, depending on their strategic scope:

Mx organization

- Monitor Safety Objectives and Safety Targets
- Monitor Risk level
- Control impact on Survivability, Competitiveness and Corporate Image
- Control impact on Credit Rating and Insurance Cost
- Assess contingency preparedness and management of change
- Control suppliers, contracted and subcontracted organizations

Types of MxSPIs (cont.)

SSP (connected to End State analysis)

- Assure regulatory compliance
- Satisfy operator's safety goals
- Assure safety for the public domain, community, EU aviation image

Customer's safety objectives

- Assure contractual safety compliance
- Satisfy customer's safety goals
- Provide competitive edge
- Enable continuous contract monitoring
- Expand Mx organization market share (differentiation)

Purpose of MxSPIs

- In relation to each MxSPI, the following questions must be answered:
 - 1. Which risk control (barrier) is weaker and needs to be reinforced?
 - 2. What specifically is the issue? What does that weakness relate to?
 - 3. What is the most appropriate metric for the indicator?
 - 4. How will the data be collected, and who will do it?
 - 5. How will the results be monitored and corrective actions identified?
 - 6. What target would we aim for ?
 - 7. What <u>alert level</u> would we set up?

Sources of data for MxSPIs

Reactive

analysis of past outcomes and events

- ASR, MOR, SAFA
- Incident and Accident Reports
- Hazards identified
- Internal Safety Investigations

Proactive

analysis of present or real time situations

- ASR
- Voluntary Safety Reports
- Safety Surveys and Safety Audits
- Safety Studies and Safety Improvement Plans (SIP)
- Trend analysis

Predictive

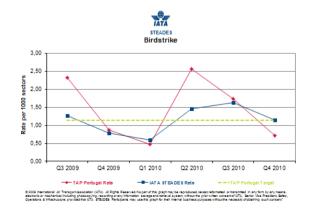
data gathering to identify possible negative future outcomes or events

- FDM, Continuous monitoring of Mx processes
- Statistical and probability analysis

Facts about MxSPIs

- There is no single MxSPI apropriate to all Mx organizations
- Chosen MxSPIs should correlate to relevant safety objectives
- It is difficult to choose good (and few) MxSPIs
- It's easy to end up with a lot of indicators
- But, in reality, they may fail to give accurate trend information
- Registered in the safety library with relevant information

MxSPIs: based on TAP Portugal End State data



End State (ES)	Undesirable State (US)	MxSPI
	Unstable Approach	Mass and Balance Occurrence
Duning (FACa)	EGPWS/GPWS Windshear	N/A
Runway Excursion (EASp)	Rejected Take-Off	Engine Loss of Power
	Hard/Heavy Landing	Brakes Failure
	Call Sign Confusion	COM Technical Incident
Mid-Air Collision (EASp)	Altitude Deviation	NAV Technical Incident
	TCAS RA	TCAS Technical Incident
Controlled Flight Into Terrain	EGPWS/GPWS Warning	N/A
(CFIT) (EASp)	Altitude Deviation	NAV Technical Incident
Loop of Control in Flight (FASp)	Alpha Protection	Airspeed Indication Failure
Loss of Control in Flight (EASp)	Severe Turbulence	N/A
Undershoot	Alpha Protection	Engine Loss of Power
Ondershoot	EGPWS/GPWS Glide Slope	N/A
Dunway Calliaion	Call Sign Confusion	COM Technical Incident
Runway Collision	Runway/Taxiway Incursion	Brakes Failure
In Flight Damage/Injuries	Bird Strike	N/A
In Flight Damage/Injuries	Severe Turbulence	N/A
Ground Collision/Damage (EASp)	Call Sign Confusion	COM Technical Incident
Hard Landing with Aircraft Damage	Hard/Heavy Landing	Engine Loss of Power
Tail Strike	Pitch High at LDG/TO	Mass and Balance Occurrence

MxSPIs track the most significant contributing factors for each US

Correlation between some US and Mx activities is weak, not enough data (N/A for the moment)

We try to have at least one MxSPI for each item under EASp

MxSPIs: based on Star Alliance WG

TAP SPI MAINTENANCE		INTENANCE	SPI (Safety Performance Indicator)			
RESP	RESPONSIBLE DEPARTMENT / SYSTEM		MNT (MAINTENANCE & ENGINEERING)	METRICS	ALERT	TARGET
ME	EG/FP	COSMOS	AIRCRAFT DEFECT RATE	(No of A/C defects logged by Flt Crew) / XXXX Flight Hours		
ME	MA/MO/TS	COSMOS/HIL's	OPEN MEL, NARROWBODY	Average open MEL items (NB) / day		
ME	MA/MO/TS	COSMOS/HIL's	OPEN MEL, WIDEBODY	Average open MEL items (WB) / day		
ME	MA/MO/TS	COSMOS/HIL's	MEL, ONE-TIME EXTENSION	No of MEL receiving a one-time extension		
ME	QL/EG/AE	TSO	AD EXEEDANCE	No of Airworthiness Directives exceedances		
ME	QL/EG/AE	TSO	MR EXEEDANCE	N⁰ of MR exceedances		
ME	N/A	N/A	MP EXEMPTIONS, NARROW BODY	Nº of Maintenance Program exemptions on NB A/C		
ME	N/A	N/A	MP EXEMPTIONS, WIDE BODY	No of Maintenance Program exemptions on WB A/C		
ME	LG/GR	Aries	CANNIBALIZATION	N⁰ of Cannibalizations		
ME	EG/FP	COSMOS	ENGINE	No of Engine related failures Incidents / 1000 cycles		
ME	EG/FP	COSMOS	LANDING GEAR	Nº of Gear related failures Incidents / 1000 cycles		
ME	EG/FP	COSMOS	FLIGHT CONTROLS	Nº of Flight control Incidents / 1000 cycles		
ME	EG/FP	COSMOS	ELETRICAL	Nº of Electric related Incidents / 1000 cycles		
ME	EG/FP	COSMOS	FUEL	No of Fuel system Incidents / 1000 cycles		
ME	EG/FP	COSMOS	FIRE / SMOKE	No of Fire or smoke Incidents / 1000 cycles		
ME	EG/FP	COSMOS	DUE MAINT. TECH. BREAKDOWN	(Nº of Events / Nº of Flight Legs) x 100		
ME	EG/FP	COSMOS	ERROR RATE IN MAINTENANCE	(Nº of Errors / Nº of tasks) x 100		

- Most MxSPIs track already known hazards and threats
- Some MxSPIs result from predictive analysis of possible failure scenarios
- Due to lack of data, in some cases positive correlation with End States is weak

MxSPIs: based on TAP M&E Safety Objectives

SPI	CALCULATION METHOD		TARGET	REVISION
1) Nº Accidents	Nº Accidents / Year	EG/FP		Annual
2) Nº TIR's	Nº Open TIRs /Year/Flight Hours			Annual
2a) № ATO	Nº Aborted Take Off/Year/TAP Fleet Departures			Annual
2b) № FR	Nº Flight Returns/Year/Flight Hours			Annual
2c) № DVF	Nº Diverted Flights/Year/Flight Hours			Annual
2d) № FC	Nº Flight Cancelations/Year/Departures	EG/FP		Annual
2e) № FOD	№ Foreign Object Damage (Bird Strikes)/Year			Annual
2f) № IFSD	№ In Flight Shut Downs/Year/Flight Hours	EG/FP		Annual
3) № OTH	№ Overweigth Landings/Year/Flight Hours	EG/FP		Annual
4) № RR	Nº Ramp Returns/Year/Departures	EG/FP		Annual
5) Nº Unschedule	Nº Unscheduled Removals/Year/Flight Hours	EG/FP		Annual
5a) № Engines	Nº Unscheduled Engine Removals	EG/FP		Quarterly
5b) Nº Units	Nº Unscheduled Components Removals	EG/FP		Quarterly
6) Nº Incidents	Nº Incidents in Maintenance Actions/Year	All		Annual
6a) № Emergency Equipments	Nº Faults in Emergency Equipments during Scheduled Tests/Year	MA/EQ		Annual
6b) № Unwanted Damages to A/C	Nº Unwanted Damages to A/C caused during Maintenance Actions/Year			Annual
7) Risk Index	Average Risk Level for All Occurrences	ME/SO		Monthly
8) Nº Reports	Nº Reports/Year			Annual
9) Nº AD Irregularities	Nº AD with Irregularities/year	QL/EG/AE		Annual
10) № Claims	Nº Claims/Year			Annual
11) Nº Claims to Service Providers	Nº Claims to Service Providers/Year	ME/MV		Annual
12) Nº Customer Claims	№ Customer Claims/Year	ME/MV		Annual

 Some MxSPIs are similar to Star Alliance WG, but the majority reflects strategic objectives of TAP M&E and the application of the Safety Policy

Customers	Airbus
Inspection and maintenance backlog	Number of deferred items / month
Failures at inspection and testing	Average time and trends to close a MEL item
Training carried out	Number of requested extension time for MEL items / month
Operator years of experience	Number of failures for each ATA / flight hour
Process safety critical roles filled	% of repaired equipments with No Fault Found
Process safety management system audit compliance	Found (NFF) per repaired equipment
Overdue audit actions	Etc.
Etc.	

- It is not obvious that different Customers would have similar safety requirements (different countries, safety systems, economic and social constraints, etc.)
- Should an MRO have a fixed set of MxSPIs and provide a standard safety performance package for its works, independent of each Customer's policy?
- Or should MROs have the flexibility to adapt their MxSPIs to specific safety requirements from different Customers?

MxSPI Headaches

- Without enough data, it is not possible to have good SPIs
- However, too much data may clutter important safety threats
- The typical operator produces huge amounts of safety data (thousands of flights/year)
- For MROs it is more difficult and in small MROs even worse
 - less data
 - (ex.) a dozen occurrences, or so (MOR)
 - (ex.) a hundred reports per year, or so (by voluntary incident reporting)
- How to analyse trends in MRO without enough data?
- Besides, many MRO reports do not translate into significant safety data (social, SST, administrative, environment, etc.)

Conclusions

Performance measurement:

essential to manage Safety

Safety continuous improvement:

needs reliable SPIs

- Not enough data weak correlation
- Too much data
 information clutter
- Fewer accidents multiple / random causes
- Difficult to connect End States with MRO Contributing Factors
- MROs need to comply with State and Customers objectives
- MROs need also to track their own Strategic indicators
- Flexible indicators ?? vs. "one-size-fits-all" package ??

The Future of SMS at TAP M&E

Thanks for your attention

